High precision half-life measurement of the superallowed β-emitter ³⁸Ca

H. I. Park, J. C. Hardy, V. E. Iacob, L. Chen, J. Goodwin, V. Horvat, N. Nica, L.Trache, and R. E. Tribble

Previously we made two measurements of the half-life of ³⁸Ca [1,2], the first an exploratory one and the second a higher-statistics one that suffered from an unusually unstable – and high (up to ~3%) – contamination from ³⁵Ar ($t_{1/2} = 1.77$ s) in the ³⁸Ca beam at the focal plane of MARS. Since the range difference between ³⁸Ca and ³⁵Ar is less than half the thickness of our mylar collection tape, our positioning of the stopped ³⁸Ca ions mid-way through the tape resulted in the simultaneous deposit of some ³⁵Ar near the back of the tape. Although the contribution of ³⁵Ar could be accounted for when we extracted the half-life of ³⁸Ca, we believed that the precision of our result could be further improved by better control of the impurities and optimized positioning of the collected sample in the tape.

We performed the final half-life measurement of ³⁸Ca in September 2009 using the same ¹H(³⁹K, 2n)³⁸Ca reaction at a primary beam energy of 30A MeV. Our experimental arrangement was the same as described before [1]. The Momentum Achromat Recoil Separator (MARS) produced a secondary ³⁸Ca beam that was better than 99% pure. Moreover, we further minimized the ³⁵Ar contaminant by depositing ³⁸Ca near the back of the mylar tape, thus ensuring that much of the ³⁵Ar passed entirely through it. During a daily routine check of MARS beam, no change was observed this time in the amount of ³⁵Ar relative to ³⁸Ca. Approximately, 200 million β events were recorded under various different settings of the experimental parameters – bias voltage of the 4π proportional gas counter, discriminator threshold, and dominant dead times – in order to check for possible systematic effects. The analysis is close to completion. This will lead to our final result for the half-life of ³⁸Ca and its associated error budget.

- H. I. Park *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2006- 2007), p. I-58; H. I. Park *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2007-2008), p. I-30.
- [2] H. I. Park *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2008-2009), p. I-33.